Çokgenler Konu Anlatımı

1 1.543

Kazanım: Çokgenleri isimlendirir, oluşturur ve temel elemanlarını tanır.

Çokgen Nedir ? ve Çokgenlerin İsimlendirilmesi

Bilgi: En az üç doğru parçasının, birer uçları ortak olacak şekilde ardışık olarak  birleştirilmesiyle elde edilen kapalı ve kendisini kesmeyen şekillere çokgen denir. Tanımdan da anlaşıldığı gibi çizilen bir şeklin çokgen olabilmesi için ;

✅ Doğru parçalarından oluşmalı

✅ Doğru parçaları birbirini kesmemeli

✅ Kapalı şekil olmalı

Örnek:

Aşağıda verilen şekili inceleyelim ve çokgen olup olmadıklarına karar verelim.

✅ Doğru parçalarından oluşmuş 👍

✅ Doğru parçaları birbirini kesmemiş 👍

✅ Kapalı şekil 👍

Verilen görsel yukarıdaki 3 şartı sağladığı için çokgen oluşturur.

Örnek:

Aşağıda verilen şekli inceleyelim ve çokgen olup olmadıklarına karar verelim.

✅ Doğru parçalarından oluşmamış 👎

✅ Doğru parçaları birbirini kesmemiş 👍

✅ Kapalı şekil 👍

Verilen görsel doğru parçalarından oluşmamış. Eğri çizgi içermektedir. Çokgen oluşturmaz.

Örnek:

Aşağıda verilen şekli inceleyelim ve çokgen olup olmadıklarına karar verelim.

✅ Doğru parçalarından oluşmuş 👍

✅ Doğru parçaları birbirini kesmemiş 👍

✅ Kapalı şekil değil 👎

Verilen görsel kapalı şekil olmadığı için çokgen oluşturmaz.

Örnek:

Aşağıda verilen şekli inceleyelim ve çokgen olup olmadıklarına karar verelim.

✅ Doğru parçalarından oluşmuş 👍

✅ Doğru parçaları birbirini kesmiş 👎

✅ Kapalı şekil 👍

Verilen görselde doğru parçaları birbirini kestiği için çokgen oluşturmaz.

Çokgenin Temel Elemanları

Çokgenin temel elemanları kenarları, köşeleri, iç açıları ve köşegenleridir. Şimdi bu temel elemanları tek tek inceleyelim.

Bilgi: Çokgeni oluşturan doğru parçalarına çokgenin kenarları denir. Kenarlar doğru parçalarından oluştuğu için “[ ]” sembolü ile gösterilir.

✅ [AB] ➡️ AB kenarı

✅ [DE] ➡️ DE kenarı

Aşağıda çokgenler ve çokgenlere ait kenar modelleri verilmiştir.

Bilgi: Kenarların birleştiği noktalara çokgenin köşeleri denir. Köşeler noktadan oluştuğu için büyük harfle ile gösterilir. Örneğin;
✅ A köşesi

✅ B köşesi

✅ C köşesi

Aşağıda çokgenler ve çokgenlere ait köşe modelleri verilmiştir.

Bilgi: Köşelerde oluşan ve çokgenin içinde kalan açıklığa çokgenin iç açısı denir. Çokgenin iç açılarını gösterirken sembol kullanarak göstermeliyiz.

✅ Bir çokgene ait A açısını ➡️ \widehat{(A)}

✅ Bir çokgene ait B açısını ➡️ \widehat{(B)}

✅ Bir çokgene ait C açısını ➡️ \widehat{(C)}

Aşağıda çokgenler ve çokgenlere ait açı modelleri verilmiştir.

Örnek:

Yukarıda verilen çokgenin iç açılarını sembol kullanarak gösterelim.

✅ D köşesine ait açıyı

➡️ \widehat{(D)}

➡️ \widehat{(GDE)}

➡️ \widehat{(EDG)}

✅ E köşesine ait açıyı

➡️ \widehat{(E)}

➡️ \widehat{(DEF)}

➡️ \widehat{(FED)}

✅ F köşesine ait açıyı

➡️ \widehat{(F)}

➡️ \widehat{(EFG)}

➡️ \widehat{(GFE)}

✅ G köşesine ait açıyı

➡️ \widehat{(G)}

➡️ \widehat{(FGD)}

➡️ \widehat{(DGF)}

Bilgi: Çokgenin ardışık olmayan kenarlarını birleştiren doğru parçalarına çokgenin köşegeni denir.

Aşağıda çokgenler ve çokgenlere ait köşegen modelleri verilmiştir.

Çokgenlerin İsimlendirilmesi

Bilgi: Çokgenler kenar sayılarına göre isimlendirilir. Kenar sayısına ” GEN ” eklediğimizde çokgenin ismi elde edilir. Örneğin;

üç kenarı olan çokgenlere üçgen,

dört kenarı olan çokgenlere dörtgen,

beş kenarı olan çokgenlere beşgen,

altı kenarı olan çokgenlere altıgen

yedi kenarı olan çokgenlere yedigen

Aşağıda verilen çokgenler kenar sayılarına göre isimlendirilmiştir.

Bilgi: Çokgenler köşelerinde yazan harfleri kullanarak özel olarak isimlendirebiliriz.
Çokgenlerin özel ismi harfler yardımı ile söylenirken, herhangi bir köşeden başlanıp saat yönünde veya saatin tersi yönünde harfleri sırası ile söylenir.

Örnek:

Yukarıda verilen çokgenleri isimlendirelim.

Çözüm:

ABC çokgeni veya ABC üçgeni

DEFG çokgeni veya DEFG dörtgeni

KLMNO çokgeni veya KLMNO beşgeni olarak isimlendirebiliriz.

ÇokgenKöşe SayısıKenar Sayısıİç Açı SayısıKöşegen Sayısı
üçgen3330
dörtgen4442
beşgen5555
altıgen6669
yedigen77714
sekizgen88820

Örnek:

Yukarıda verilen çokgenin çokgen çeşidini, çokgenin isimlendirilmesini ,kenar sayısını , iç açı sayısını , köşe sayısını , kenarlarını , köşelerini ve iç açılarını bulalım.

Çözüm:

Çokgen çeşidi

➡️ Çokgen 9 kenardan oluştuğu için çokgen çeşidi dokuzgendir.

Çokgenin isimlendirilmesi

➡️ ABCDEFGHI Dokuzgeni

Kenar sayısı

➡️ 9

İç açı sayısı

➡️ 9

Köşe sayısı

➡️ 9

Kenarları

➡️ [AB] , [BC] , [CD] , [DE] , [EF] , [FG] , [GH] , [HI] , [AI]

Köşeleri

➡️ A , B , C , D , E , F ,G , H , I ,

İç açıları

➡️ \widehat{(A)} , \widehat{(B)} , \widehat{(C)} , \widehat{(D)} , \widehat{(E)} , \widehat{(F)} , \widehat{(G)} , \widehat{(H)} , \widehat{(I)}

🎥 Bir Soru Bir Video ➖ Yeni Nesil Soru 🎥

Soru:

Yukarıda verilen altıgen şeklindeki kağıt Şekil 1’deki gibi tam ortasından ok yönünde katlanıp şekil 2’deki konumuna getiriliyor. Daha sonra şekil 2’de oluşan kağıt tam ortasından ok yönünde katlanıp şekil 3’deki duruma getiriliyor.

Buna göre şekil 3’de oluşan kağıt kesik çizgi doğrultusunda kesildiğinde oluşan çokgenlerin köşeleri toplamı kaçtır?

1 yorum
  1. Esma Sultan Gültaç diyor

    hocam çok güzel anlatmışsınız her zamanki gibi😄

Cevap bırakın

E-posta hesabınız yayımlanmayacak.

Insert math as
Block
Inline
Additional settings
Formula color
Text color
#333333
Type math using LaTeX
Preview
\({}\)
Nothing to preview
Insert